Các dạng toán lớp 7 và cách giải

      14

Cho dãy số biện pháp đông đảo u1, u2, u3, ... un (*), khoảng cách giữa nhị số hạng liên tiếp của hàng là d.

Bạn đang xem: Các dạng toán lớp 7 và cách giải

+ lúc kia số những số hạng của hàng (*) là:
*
(1)
+ Tổng các số hạng của dãy (*) là:
*
(2)
+ Đặc biệt từ bỏ công thức (1) ta có thể tính được số hạng sản phẩm n của hàng (*) là: un = u1 + (n - 1)dHoặc Lúc u1 = d = 1 thì S1 = 1 + 2 + 3 + ...+ n = n(n + 1) /2 

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.

Xem thêm: Của Quý Bị Cong Xuống Có Bình Thường Không? Có Cần Chữa Trị Dương Vật Bị Cong Xuống Có Nguy Hiểm

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)Hướng dẫn giảiCách 1:Ta thấy mỗi số hạng của tổng trên là tích của nhị số thoải mái và tự nhiên thường xuyên, khi đó:Hotline a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)nan = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)Cộng từng vế của những đẳng thức bên trên ta có:3(a1 + a2 + … + an) = n(n + 1)(n + 2)3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒
*
Cách 2: Ta có3A = 1.2.3 + 2.3.3 + … + n(n + 1).33A = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)<(n - 2) - (n - 1)>3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)3A = n(n + 1)(n + 2)
*
* Tổng quát mắng hoá ta có:k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta tiện lợi chứng tỏ phương pháp trên nhỏng sau:k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)<(k + 2) - (k - 1)> = 3k(k + 1)Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)Hướng dẫn giảiÁp dụng tính thừa kế của bài bác 1 ta có:4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).44B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - <(n - 2)(n - 1)n(n + 1)>4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
*
Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)Hướng dẫn giảiTa thấy: 1.4 = 1.(1 + 3)2.5 = 2.(2 + 3)3.6 = 3.(3 + 3)4.7 = 4.(4 + 3)…….n(n + 3) = n(n + 1) + 2nVậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2nC = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2nC = <1.2 +2.3 +3.4 + … + n(n + 1)> + (2 + 4 + 6 + … + 2n)⇒ 3C = 3.<1.2 +2.3 +3.4 + … + n(n + 1)> + 3.(2 + 4 + 6 + … + 2n)3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)3C = n(n + 1)(n + 2) +
*
⇒ C =
*
+
*
=
*
Bài 4: Tính D = 12 + 22 + 32 + .... + n2Hướng dẫn giảiNhận xét: Các số hạng của bài 1 là tích của nhì số tự nhiên và thoải mái thường xuyên, còn sinh hoạt bài bác này là tích của nhị số thoải mái và tự nhiên kiểu như nhau. Do đó ta chuyển về dạng bài xích tập 1:Ta có:A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)Mặt khác theo bài bác tập 1 ta có:
*
với 1 + 2 + 3 + .... + n =
*
⇒D = 12 + 22 + 32 + .... + n2 =
*
Bài 5: Tính E = 13 + 23 + 33 + ... + n3Hướng dẫn giảiTương tự bài xích toán sinh hoạt bên trên, bắt nguồn từ bài toán 2, ta đưa tổng B về tổng E:B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)
B = (23 - 2) + (33 - 3) + .... + (n3 - n)B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)B = (13 + 23 + 33 + ... + n3) -
*
⇒ 13 + 23 + 33 + ... + n3 = B +
*
*
⇒ E = 13 + 23 + 33 + ... + n3 =
*
+
*

MỘT SỐ BÀI TẬPhường NÂNG CAO TOÁN 7 DẠNG KHÁC

Bài 1. Tính S1 = 1 + 2 + 22 + 23 + … + 263Lời giảiCách 1:Ta thấy: S1 = 1 + 2 + 22 + 23 + … + 263 (1)2S1 = 2 + 22 + 23 + … + 263 + 264 (2)Trừ từng vế của (2) mang lại (1) ta có:2S1 - S1 = 2 + 22 + 23 + … + 263 + 264 - (1 + 2 + 22 + 23 + … + 263)= 264 - 1. Hay S1 = 264 - 1Cách 2:Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1Tài liệu vẫn tồn tại..........----------------------------------------------------------------------Mời các bạn sở hữu về để xem toàn bộ Các dạng toán thù cải thiện lớp 7. Hy vọng tư liệu này để giúp đỡ những em học sinh nâng cấp khả năng giải bài bác tập Toán 7. Ngoài ra, mời các bạn xem thêm tư liệu sau: Toán lớp 7, Giải bài bác tập Toán lớp 7, Tài liệu tiếp thu kiến thức lớp 7, Đề thi thân kì 1 lớp 7, Đề thi học kì 1 lớp 7Bộ đề ôn tập Toán thù lớp 7100 câu hỏi ôn tập môn Toán lớp 7các bài luyện tập về số hữu tỉ